Capability in Rockwell C Scale Hardness

نویسندگان

  • Walter S. Liggett
  • Samuel R. Low
  • David J. Pitchure
  • John Song
چکیده

A measurement system is capable if it produces measurements with uncertainties small enough for demonstration of compliance with product specifications. To establish the capability of a system for Rock-well C scale hardness, one must assess measurement uncertainty and, when hardness is only an indicator, quantify the relation between hardness and the product property of real interest. The uncertainty involves several components, which we designate as lack of repeatability, lack of reproducibility, machine error, and indenter error. Component-by-component assessment leads to understanding of mechanisms and thus to guidance on system upgrades if these are necessary. Assessment of some components calls only for good-quality test blocks, and assessment of others requires test blocks that NIST issues as Standard Reference Materials (SRMs). The important innovation introduced in this paper is improved handling of the hardness variation across test-block surfaces. In addition to hardness itself, the methods in this paper might be applicable to other local measurement of a surface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric Measurement Comparisons for Rockwell Diamond Indenters

− In the uncertainty budget of Rockwell C hardness (HRC) tests, geometric error of the Rockwell diamond indenter is a major contributor. The geometric calibration of Rockwell diamond indenters has been a key issue for Rockwell hardness standardization. The National Institute of Standards and Technology (NIST) developed a microform calibration system based on a stylus instrument for the geometri...

متن کامل

Self-Similarity Simplification Approaches for the Modeling and Analysis of Rockwell Hardness Indentation

The indentation process of pressing a Rockwell diamond indenter into inelastic material has been studied to provide a means for the analysis, simulation and prediction of Rockwell hardness tests. The geometrical characteristics of the spheroconical-shaped Rockwell indenter are discussed and fit to a general function in a self-similar way. The complicated moving boundary problem in Rockwell hard...

متن کامل

Microform Calibration Uncertainties of Rockwell Diamond Indenters

National and international comparisons in Rockwell hardness tests show significant differences. Uncertainties in the geometry of the Rockwell diamond indenters are largely responsible for these differences. By using a stylus instrument, with a series of calibration and check standards, and calibration and uncertainty calculation procedures, we have calibrated the microform geometric parameters ...

متن کامل

Accuracy of Standard Blocks for Hardness and Uncertainty of Hardness

− The authors numerically discuss the accuracy of the hardness values of standard hardness blocks by evaluating the uniformity of hardness blocks and the resolution of hardness values according to test method. As a result of reviewing the results of this evaluation and the reasonability of the currently proposed method for evaluating the uncertainty of hardness values, it is revealed that the v...

متن کامل

Indentation Hardness Measurements at Macro-, Micro-, and Nanoscale: A Critical Overview

The Brinell, Vickers, Meyer, Rockwell, Shore, IHRD, Knoop, Buchholz, and nanoindentation methods used to measure the indentation hardness of materials at different scales are compared, and main issues and misconceptions in the understanding of these methods are comprehensively reviewed and discussed. Basic equations and parameters employed to calculate hardness are clearly explained, and the di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 105  شماره 

صفحات  -

تاریخ انتشار 2000